TypeScript 2.1

Prettier Errors

tsc --pretty

src/errorExamplests:2:1 - errc Cannot assign to 'immaConst'
because it is a constant or a read-only property.

i immaConst = 50;

Y src/errorExample. ts(2,1):)r TS2540: Cannot assign to 'immaConst'
because it is a constant or a read-only property.

i immaConst = 50;

https://qithub.com/JKillian/new-in-TS2.7/blob/master/src/errorExample.ts

https://github.com/JKillian/new-in-TS2.7/blob/master/src/errorExample.ts

Numeric Separators g
E@@WW

const costPerBitcoin = 1500000000

const costPerBitcoin =1 500 000 000

in’ Type Guards e

Ve,

https://github.com/JKillian/new-in-TS2.7/blob/master/src/inTypegquard.ts

https://github.com/JKillian/new-in-TS2.7/blob/master/src/inTypeguard.ts

Object Literal

Type Inference .
e

https://github.com/JKillian/new-in-TS2.7/blob/master/src/objectlLiteral Type.ts

https://github.com/JKillian/new-in-TS2.7/blob/master/src/objectLiteralType.ts

--strictPropertylnitialization e

Ve,

https://qithub.com/JKillian/new-in-TS2.7/blob/master/src/strictPropertyInitialization.ts

https://qithub.com/JKillian/new-in-TS2.7/blob/master/src/definiteAssignment.ts

https://github.com/JKillian/new-in-TS2.7/blob/master/src/strictPropertyInitialization.ts
https://github.com/JKillian/new-in-TS2.7/blob/master/src/definiteAssignment.ts

Fixed Length Tuples e
el iiman

https://github.com/JKillian/new-in-TS2.7/blob/master/src/tupleLength.ts

https://github.com/JKillian/new-in-TS2.7/blob/master/src/tupleLength.ts

unique symbol @
Hard

What is a symbol?

> The symbol data type is highly specialized in purpose, and
remarkable for its lack of versatility

> A symbol value may be used as an identifier for object
properties; this 1is the data type's only purpose.

What is a symbol?

Symbol("foo") !== Symbol("foo™)

const foo = Symbol()

const bar = Symbol()

typeof foo === "symbol"

typeof bar === "symbol"

let obj = {}

obj[foo] = "foo"

obj[bar] = "bar"

JSON.stringify(obj) // {}
Object.keys(obj) // []
Object.getOwnPropertyNames(obj) // []
Object.getOwnPropertySymbols(obj) // [Symbol(), Symbol()]

O oo NOGOYUTL H WN P

g
= &

=
N

https://github.com/JKillian/new-in-TS2.7/blob/master/src/unigueSymbol.ts

https://github.com/JKillian/new-in-TS2.7/blob/master/src/uniqueSymbol.ts

Gonst-named @

Properties
Hard

https://github.com/JKillian/new-in-TS2.7/blob/master/src/constantProperties.ts

https://github.com/JKillian/new-in-TS2.7/blob/master/src/constantProperties.ts

Improved Class @
Type-Narrowing
Hard

Improved Class Type-Narrowing

e Structurally identical, but distinct, class types are now
preserved in union types (instead of eliminating all but
one).

e Union type subtype reduction only removes a class type if
it is a subclass of and derives from another class type
in the union.

e Type checking of the instanceof operator is now based on
whether the type of the left operand derives from the
type indicated by the right operand (as opposed to a
structural subtype check).

Improved Class Type-Narrowing

let al
let a2

function

class A {}

class B extends A {}

class C extends A {}

class D extends A { c: string }
class E extends D {}

[new A(), new B(), new C(), new D(), new E()]1; // AIll

[new B(), new C(), new D(), new E()];

fl(x: B | C | D) {
if (x instanceof B) {

Xy

// B (previously B | D)

else if (x instanceof C) {

}
Xy
}
else {
X5
}

// C

// D (previously never)

// (B | C | D)I] (previously BI[])

--esModulelnterop

--esModulelnterop

— — — TypeScript 2.7 updates CommonJS/AMD/UMD module emit to synthesize namespace records
based on the presence of an __esModule indicator under —-esModuleInterop . The change
brings the generated output from TypeScript closer to that generated by Babel.

Previously CommonJS/AMD/UMD modules were treated in the same way as ES6 modules,
resulting in a couple of problems. Namely:

¢ TypeScript treats a namespace import (i.e. import * as foo from "foo") fora
CommonJS/AMD/UMD module as equivalent to const foo = require("foo") . Things are
simple here, but they don't work out if the primary object being imported is a primitive or a
class or a function. ECMAScript spec stipulates that a namespace record is a plain object,
and that a namespace import (foo in the example above) is not callable, though allowed by
TypeScript

Similarly a default import (i.e. import d from "foo") for a CommonJS/AMD/UMD module
as equivalent to const d = require("foo").default . Most of the CommonJS/AMD/UMD
modules available today do not have a default export, making this import pattern
practically unusable to import non-ES modules (i.e. CommonJS/AMD/UMD). For instance
import fs from "fs" or import express from "express" are not allowed.

Under the new --esModuleInterop these two issues should be addressed:

¢ A namespace import (i.e. import x as foo from "foo") is now correctly flagged as
uncallabale. Calling it will result in an error.

¢ Default imports to CommonJS/AMD/UMD are now allowed (e.g. import fs from "fs"),
and should work as expected.

Note: The new behavior is added under a flag to avoid unwarranted breaks to existing code
bases. We highly recommend applying it both to new and existing projects. For existing
projects, namespace imports (import * as express from "express"; express();) will
need to be converted to default imports (import express from "express"; express();).

Thanks!

https://github.com/JKillian | jasonkillian.com

Credit and thanks to: MDN for their Symbol docs; the TypeScript team for their great docs on TS 2.7

https://developer.mozilla.org/en-US/docs/Glossary/Symbol
https://github.com/Microsoft/TypeScript/wiki/What's-new-in-TypeScript#typescript-27

